Facility Location and the Geometric Minimum-Diameter Spanning Tree
نویسندگان
چکیده
Let P be a set of n points in the plane. The geometric minimum-diameter spanning tree (MDST) of P is a tree that spans P and minimizes the Euclidian length of the longest path. It is known that there is always a monoor a dipolar MDST, i.e. a MDST with one or two nodes of degree greater 1, respectively. The more difficult dipolar case can so far only be solved in slightly subcubic time. This paper has two aims. First, we present a solution to a new data structure for facility location, the minimum-sum dipolar spanning tree (MSST), that mediates between the minimum-diameter dipolar spanning tree and the discrete two-center problem (2CP) in the following sense: find two centers p and q in P that minimize the sum of their distance plus the distance of any other point (client) to the closer center. This is of interest if the two centers do not only serve their customers (as in the case of the 2CP), but frequently have to exchange goods or personnel between themselves. We show that this problem can be solved in O(n log n) time and that it yields a factor-4/3 approximation of the MDST. Second, we give two fast approximation schemes for the MDST. One uses a grid and takes O(E + n) time, where E = 1/ε and the O∗-notation hides terms of type O(log E). The other uses the wellseparated pair decomposition and takes O(nE +En log n) time. A combination of the two approaches runs in O(E + n) time. Both schemes can also be applied to MSST and 2CP.
منابع مشابه
Approximating the Geometric Minimum-Diameter Spanning Tree
Let P be a set of n points in the plane. The geometric minimum-diameter spanning tree (MDST) of P is a tree that spans P and minimizes the Euclidian length of the longest path. It is known that there is always a monoor a dipolar MDST, i.e. a MDST whose longest path consists of two or three edges, respectively. The more difficult dipolar case can so far only be solved in O(n) time. This paper ha...
متن کاملOPTIMIZATION OF TREE-STRUCTURED GAS DISTRIBUTION NETWORK USING ANT COLONY OPTIMIZATION: A CASE STUDY
An Ant Colony Optimization (ACO) algorithm is proposed for optimal tree-structured natural gas distribution network. Design of pipelines, facilities, and equipment systems are necessary tasks to configure an optimal natural gas network. A mixed integer programming model is formulated to minimize the total cost in the network. The aim is to optimize pipe diameter sizes so that the location-alloc...
متن کاملGeometric Minimum Diameter Minimum Cost Spanning Tree Problem
In this paper we consider bi-criteria geometric optimization problems, in particular, the minimum diameter minimum cost spanning tree problem and the minimum radius minimum cost spanning tree problem for a set of points in the plane. The former problem is to construct a minimum diameter spanning tree among all possible minimum cost spanning trees, while the latter is to construct a minimum radi...
متن کاملA Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کاملApproximating the geometric minimum-diameter spanning tree
Given a set P of points in the plane, a geometric minimum-diameter spanning tree (GMDST) of P is a spanning tree of P such that the longest path through the tree is minimized. In this paper, we present an approximation algorithm that generates a tree whose diameter is no more than (1+ ) times that of a GMDST, for any > 0. Our algorithm reduces the problem to several grid-aligned versions of the...
متن کامل